Wirtschaftsuniversität Wien Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
  • Rotate to the left
  • Rotate to the right
  • Reset image to default view
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Konvolut Wealth and Income Distribution 1

Bibliographic data

Works

Document type:
Works
Collection:
Josef Steindl Collection
Title:
Konvolut Wealth and Income Distribution 1
Author:
Steindl, Josef
Scope:
Konvolut aus handschriftlichen und maschinenschriftlichen Blättern (insgesamt 70 Blätter)
Year of publication:
1975
Source material date:
[vermutlich um 1975]
Language:
English
Description:
Das vorliegende Konvolut umfasst: handschriftliche Tabellen mit Datenmaterial zur Einkommensverteilung in Schweden, Teile eines Papers zu den Modellen der Einkommens- und Vermögensverteilung von Pareto, Simon und Champernowne sowie ausführliche Fußnoten mit Modellanwendungen bzw. Bezug zu anderen Bereichen wie z.B. Unternehmenswachstum (Bezug zu Growth of Firms in "Random Processes").
Note:
Das Konvolut enthält handschriftliche Tabellen, graphische Darstellungen der Berechnungen auf Millimeterpapier, Teile eines Papers (Typoskript) mit Seitennummerierung 8-25 sowie mehrere Blätter mit handschriftlichen Notizen.
Related work:
Steindl, Josef: The Pareto Distribution. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 321-327 Steindl, Josef: The Personal Distribution of Income. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 356-371 Steindl, Josef: The Distribution of Wealth after a Model of Wold and Whittle. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 328-355
Topic:
Stochastic processes and size distribution
JEL Classification:
D31 [Personal Income, Wealth, and Their Distributions]
Shelfmark:
S/M.27.1
Rights of use:
All rights reserved
Access:
Free access

Full text

10 
J 
can write for the density of the rate of return f (Y - k¥) 
and for its symmetric function f* (kW - Y). In this way we 
manage to express the argument of the function f* (which 
actually represents the reciprocal profit rote, a—dwaea ' 
s±-onle3«=gg&fe«r^ in terms of W and Y again, and yet keep 
it independent of ¥, provided the regression is homo- 
scedastic. k is a constant which equals -fce regression co 
efficient of Y on (see fig. 1). 
rate of 
If thc/ireturn decreases with wealth, we have to take 
k<1, if it increases with wealth, we take k-^-1. In fig. 1 
the first case is assumed. 
Proceeding os "before, the symmetric function f* (k¥ - Y) 
will now he randomised by means of the wealth function ( 
which means taking the Laplace transform of the former: 
q (X) 
-¥<* , 
e d¥ 
c d V f * (k¥ - Y) 
e -(<*/]$ dY for k¥>Y> 0 
(4) 
q (X) 
0 
for k¥<Y> 0 
This is now the second result: If there is a log-linear 
dependence of income on wealth which is homoscedastic, with 
formal grounds we 'might ari' 
on coefficient, put since for\ecori 
clearly the independent vari 
comgt-or- weaUrhiias'iTO'-be used.-'-V
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Works

METS MARC XML Dublin Core RIS IIIF manifest Mirador ALTO TEI Full text PDF DFG-Viewer OPAC

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Works

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

Here you can copy a Goobi viewer own URL:

Citation recommendation

Steindl, J. (1975). Konvolut Wealth and Income Distribution 1.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Cookies