Wirtschaftsuniversität Wien Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
  • Rotate to the left
  • Rotate to the right
  • Reset image to default view
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Konvolut Wealth and Income Distribution 2

Bibliographic data

Works

Document type:
Works
Collection:
Josef Steindl Collection
Title:
Konvolut Wealth and Income Distribution 2
Author:
Steindl, Josef
Scope:
Konvolut aus handschriftlichen und maschinenschriftlichen Blättern (insgesamt 92 Blätter)
Year of publication:
1975
Source material date:
[vermutlich um 1975]
Language:
English
Description:
Das vorliegende Konvolut samt Anmerkungen in den Durchschlagskopien und handschriftlichen Notizen bezieht sich auf Modelle der Einkommens- und Vermögensverteilung von Pareto, Simon und Champernowne. Die theoretischen Ausführungen sind mit empirischen Daten aus den Niederlanden und Schweden gestützt.
Note:
Das Konvolut enthält Notizen und Teil eines Papers mit Seitennummerierung 8-25. Es liegen zusätzlich 2 Durchschlagskopien davon mit unterschiedlichen Anmerkungen, Ergänzungen und Korrekturen vor. Zusätzlich sind auf 2 Millimeterpapier-Blättern graphische Darstellungen der Berechnungen vorhanden.
Related work:
Steindl, Josef: The Pareto Distribution. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 321-327 Steindl, Josef: The Personal Distribution of Income. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 356-371 Steindl, Josef: The Distribution of Wealth after a Model of Wold and Whittle. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 328-355 Steindl, Josef: The Distribution of Wealth after a Model of Wold and Whittle. In: Review of Economic Studies, Vol. 39 (3), July, 1973, S. 263-279
Topic:
Stochastic processes and size distribution
JEL Classification:
D31 [Personal Income, Wealth, and Their Distributions]
Shelfmark:
S/M.36.1
Rights of use:
All rights reserved
Access:
Free access

Full text

to p. 9 (footnote) 
— 
' The relation (3) may have applications in different 
contexts as well. Thus the distribution of wealth 
results from a convolution of the accumulation of 
previous generations with the accumulation of the 
living generation /13/. Denote the accumulation of 
previous generations by W, and the total accumulation 
by W , both measured on the log scale. The accumulation 
of the living is W-W, » riT, where r is the rate of 
accumulation and 3* the "spent life" of the living wealth 
owners, reckoned from the time of their inheritance. If 
we may regard ^ (W-W,), the distribution of the spent 
life time (telescoped by r) as independent of the inher 
ited wealth W . we can write for the density of the total 
' - r 
wealth distribution q(W): 
q(W) = (l W f (W-W 
The wealth will conform to the Pareto law with coefficient 
c>C, and we do not need to assume anything about the 
distribution of the spent-life time, except that it is in 
dependent of inherited wealth. 
i 7\ — c£ > 
0 />, o
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Works

METS MARC XML Dublin Core RIS IIIF manifest Mirador ALTO TEI Full text PDF DFG-Viewer OPAC

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Works

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

Here you can copy a Goobi viewer own URL:

Citation recommendation

Steindl, J. (1975). Konvolut Wealth and Income Distribution 2.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Cookies