Wirtschaftsuniversität Wien Logo Full screen
  • First image
  • Previous image
  • Next image
  • Last image
  • Show double pages
  • Rotate to the left
  • Rotate to the right
  • Reset image to default view
Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Konvolut Wealth and Income Distribution 2

Bibliographic data

Works

Document type:
Works
Collection:
Josef Steindl Collection
Title:
Konvolut Wealth and Income Distribution 2
Author:
Steindl, Josef
Scope:
Konvolut aus handschriftlichen und maschinenschriftlichen Blättern (insgesamt 92 Blätter)
Year of publication:
1975
Source material date:
[vermutlich um 1975]
Language:
English
Description:
Das vorliegende Konvolut samt Anmerkungen in den Durchschlagskopien und handschriftlichen Notizen bezieht sich auf Modelle der Einkommens- und Vermögensverteilung von Pareto, Simon und Champernowne. Die theoretischen Ausführungen sind mit empirischen Daten aus den Niederlanden und Schweden gestützt.
Note:
Das Konvolut enthält Notizen und Teil eines Papers mit Seitennummerierung 8-25. Es liegen zusätzlich 2 Durchschlagskopien davon mit unterschiedlichen Anmerkungen, Ergänzungen und Korrekturen vor. Zusätzlich sind auf 2 Millimeterpapier-Blättern graphische Darstellungen der Berechnungen vorhanden.
Related work:
Steindl, Josef: The Pareto Distribution. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 321-327 Steindl, Josef: The Personal Distribution of Income. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 356-371 Steindl, Josef: The Distribution of Wealth after a Model of Wold and Whittle. In: Steindl, Josef: Economic Papers 1941-88. London: Macmillan, 1990, S. 328-355 Steindl, Josef: The Distribution of Wealth after a Model of Wold and Whittle. In: Review of Economic Studies, Vol. 39 (3), July, 1973, S. 263-279
Topic:
Stochastic processes and size distribution
JEL Classification:
D31 [Personal Income, Wealth, and Their Distributions]
Shelfmark:
S/M.36.1
Rights of use:
All rights reserved
Access:
Free access

Full text

9 
q (Y) - cdY 
OO 
f* (¥ - Y) e _<7CW dW *» 
= c(f(oC) e -oCY dY 
(w> HO) 
(3) 
where Cf> (oo) is the Laplace transform of i*(x). 
The first result is thus: If the rate of return is inde 
pendent of wealth, the Pareto law will he reproduced in 
the distribution of income, and the coefficient will be 
the same as for wealth. The particular form of the return 
rate distribution is of no account, except for a scale 
»> 
factor. 
This result can be somewhat generalized. If the rate of 
return is not ^dependent of wealth - and indeed it will 
hardly be in reality - then there will be a correlation 
between income and wealth. If this dependence of income 
on wealth is linear in the logs and if the linear re 
gression is also homoscedastic we can virtually re-establish 
the previous case of equation (3) by stretching or con 
tracting the scale of W.(see fig. 1). That is to say, we 
/ 
- k- W ^
	        

Cite and reuse

Cite and reuse

Here you will find download options and citation links to the record and current image.

Works

METS MARC XML Dublin Core RIS IIIF manifest Mirador ALTO TEI Full text PDF DFG-Viewer OPAC

Image

PDF ALTO TEI Full text
Download

Image fragment

Link to the viewer page with highlighted frame Link to IIIF image fragment

Citation links

Citation links

Works

To quote this record the following variants are available:
Here you can copy a Goobi viewer own URL:

Image

Here you can copy a Goobi viewer own URL:

Citation recommendation

Steindl, Josef. “Konvolut Wealth and Income Distribution 2.” N.p., 1975. Print.
Please check the citation before using it.

Image manipulation tools

Tools not available

Share image region

Use the mouse to select the image area you want to share.
Please select which information should be copied to the clipboard by clicking on the link:
  • Link to the viewer page with highlighted frame
  • Link to IIIF image fragment

Cookies