## Volltext: Konvolut Wealth and Income Distribution 2

```- 9 -
For the purposes of the following calculation. It Is necessary
to use the mirror function of f (y-w), that Is f (w-y), which
will be as much Independent of wealth as the former.
In terms of random variables we have then
U-A
We can then represent the density of income g (y) by means of
randomisation as follows:
—uy
r ur
g (y) * //(w-y) e dw - C
~~q0 i
''V
g (y) - o j'r
where is the Laplace transform of j (w)
td" A- y A o
Cr' <1
1
The above mixture is a Laplace transform of /(w), shifted to the
right by y.
The Laplace transform requires that f (w) is defined as equal to
sero for w 4 o . If the density function / is shifted to the
right, the densties for w <y will therefore be zero. We have
thus to assume that w > y (in other words, that there are no cases
of wealth smaller than income, which means the rate of return must
be less than 100%)•
```

### Nutzerhinweis

Sehr geehrte Benutzerin, sehr geehrter Benutzer,

aufgrund der aktuellen Entwicklungen in der Webtechnologie, die im Goobi viewer verwendet wird, unterstützt die Software den von Ihnen verwendeten Browser nicht mehr.

Bitte benutzen Sie einen der folgenden Browser, um diese Seite korrekt darstellen zu können.

Vielen Dank für Ihr Verständnis.