# Volltext: Konvolut Wealth and Income Distribution 2

```We can then represent the density of income g (y) by means of
randomisation as follows:
g (y) =
f t*) *
where is
(w-y)e
0
the
dw =
>
transform of
(w)
The above mixture is a Laplace transform of (w), shifted to the
right by y.
The Laplace transform requires that (w) is defined as equal to
zero for w o . If the density function is shifted to the
right, the densties for w v will therefore be zero. We have
thus to assume that w y (in other words, that there are no cases
of wealth smaller than income, which means the rate of return must
be less than 100%).
Equation (2) shows that the Pareto form of the wealth distribution
is reproduced in the income distribution, provided the independence
condition is fulfilled, and y w.
We have now to face the fact that the rate of return on wealth
will in reality not be independent of wealth. The cross-classifi
cations of wealth and income ^wealth ownersffor Holland, Sweden)
show that income is a linear function of wealth, the regression
coefficient being smaller than unity. We can easilv take account
of that by defining a conditional rate of return density or rather
its mirror function as (kw-v), where k is the regression coefficient
of y on w. Assuming that the variance and the higher moments of
```

### Nutzerhinweis

Sehr geehrte Benutzerin, sehr geehrter Benutzer,

aufgrund der aktuellen Entwicklungen in der Webtechnologie, die im Goobi viewer verwendet wird, unterstützt die Software den von Ihnen verwendeten Browser nicht mehr.

Bitte benutzen Sie einen der folgenden Browser, um diese Seite korrekt darstellen zu können.

Vielen Dank für Ihr Verständnis.